Glucosinolate and amino acid biosynthesis in Arabidopsis.

نویسندگان

  • Ben Field
  • Guillermo Cardon
  • Maria Traka
  • Johan Botterman
  • Guy Vancanneyt
  • Richard Mithen
چکیده

Enzymes that catalyze the condensation of acetyl coenzyme A and 2-oxo acids are likely to be important in two distinct metabolic pathways in Arabidopsis. These are the synthesis of isopropylmalate, an intermediate of Leu biosynthesis in primary metabolism, and the synthesis of methylthioalkylmalates, intermediates of Met elongation in the synthesis of aliphatic glucosinolates (GSLs), in secondary metabolism. Four Arabidopsis genes in the ecotype Columbia potentially encode proteins that could catalyze these reactions. MAM1 and MAML are adjacent genes on chromosome 5 at the Gsl-elong locus, while MAML-3 and MAML-4 are at opposite ends of chr 1. The isopropylmalate synthase activity of each member of the MAM-like gene family was investigated by heterologous expression in an isopropylmalate synthase-null Escherichia coli mutant. Only the expression of MAML-3 restored the ability of the mutant to grow in the absence of Leu. A MAML knockout line (KO) lacked long-chain aliphatic GSLs, which were restored when the KO was transformed with a functional MAML gene. Variation in expression of MAML did not alter the total levels of Met-derived GSLs, but just the ratio of chain lengths. MAML overexpression in Columbia led to an increase in long-chain GSLs, and an increase in 3C GSLs. Moreover, plants overexpressing MAML contained at least two novel amino acids. One of these was positively identified via MS/MS as homo-Leu, while the other, with identical mass and fragmentation patterns, was likely to be homo-Ile. A MAML-4 KO did not exhibit any changes in GSL profile, but had perturbed soluble amino acid content.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Amino Acid to Glucosinolate Biosynthesis: Protein Sequence Changes in the Evolution of Methylthioalkylmalate Synthase in Arabidopsis W OA

Methylthioalkylmalate synthase (MAM) catalyzes the committed step in the side chain elongation of Met, yielding important precursors for glucosinolate biosynthesis in Arabidopsis thaliana and other Brassicaceae species. MAM is believed to have evolved from isopropylmalate synthase (IPMS), an enzyme involved in Leu biosynthesis, based on phylogenetic analyses and an overlap of catalytic abilitie...

متن کامل

From amino acid to glucosinolate biosynthesis: protein sequence changes in the evolution of methylthioalkylmalate synthase in Arabidopsis.

Methylthioalkylmalate synthase (MAM) catalyzes the committed step in the side chain elongation of Met, yielding important precursors for glucosinolate biosynthesis in Arabidopsis thaliana and other Brassicaceae species. MAM is believed to have evolved from isopropylmalate synthase (IPMS), an enzyme involved in Leu biosynthesis, based on phylogenetic analyses and an overlap of catalytic abilitie...

متن کامل

A plastidic transporter involved in aliphatic glucosinolate biosynthesis.

The distinctive flavors and anticarcinogenic properties of cruciferous vegetables are largely due to the presence of glucosinolates. These sulfur-rich metabolites are derived from one of several amino acids via three stages: (1) elongation of the amino acid side chain; (2) formation of the core glucosinolate skeleton; and (3) secondary modification of the side chain (reviewed in Grubb and Abel,...

متن کامل

Integrated Proteomics and Metabolomics of Arabidopsis Acclimation to Gene-Dosage Dependent Perturbation of Isopropylmalate Dehydrogenases

Maintaining metabolic homeostasis is critical for plant growth and development. Here we report proteome and metabolome changes when the metabolic homeostasis is perturbed due to gene-dosage dependent mutation of Arabidopsis isopropylmalate dehydrogenases (IPMDHs). By integrating complementary quantitative proteomics and metabolomics approaches, we discovered that gradual ablation of the oxidati...

متن کامل

Biochemical Genetics of Plant Secondary Metabolites in Arabidopsis thaliana: The Glucosinolates.

Mutants of Arabidopsis thaliana with a glucosinolate content different from wild type were isolated by screening a mutagenized population of plants. Six mutants were detected out of a population of 1200 screened. One of these mutants, TU1, was analyzed in detail. Leaf and seed tissues of line TU1 lack or have reduced amounts of many of the aliphatic glucosinolates found in the wild type due to ...

متن کامل

Structural and functional evolution of isopropylmalate dehydrogenases in the leucine and glucosinolate pathways of Arabidopsis thaliana.

The methionine chain-elongation pathway is required for aliphatic glucosinolate biosynthesis in plants and evolved from leucine biosynthesis. In Arabidopsis thaliana, three 3-isopropylmalate dehydrogenases (AtIPMDHs) play key roles in methionine chain-elongation for the synthesis of aliphatic glucosinolates (e.g. AtIPMDH1) and leucine (e.g. AtIPMDH2 and AtIPMDH3). Here we elucidate the molecula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 135 2  شماره 

صفحات  -

تاریخ انتشار 2004